Чт, 19.12.2024, 20:14
Приветствую Вас Гость | RSS

enshteinworldq

Категории раздела
Мои статьи [8] Physik [4] Биология [8]
Все что связано с биологией и ее под темами
Астрономия [3]
Биографий учоных [2] Высшая и элементарная Математика [0]
Наш опрос
Какая самая интересная наука 21 в.
Всего ответов: 39
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Каталог статей

Главная » Статьи » Мои статьи

Теория Хаоса
Диаграмма раздвоения логистической карты, где x → r x (1 - x). Каждый вертикальный сектор показывает аттрактор определенного значения r. Диаграмма отображает удвоение периода когда r увеличивается, что в конечном итоге производит хаос

Тео́рия ха́оса — математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных при определённых условиях явлению, известному как хаос. Поведение такой системы кажется случайным, даже если модель, описывающая систему, являетсядетерминированной.

Примерами подобных систем являются атмосфературбулентные потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием.

Теория хаоса — область исследований, связывающая математику, физику и философию.

Основные сведения

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону и, в каком-то смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения (см. хаос в мифологии). Существует также такая область физики, как теория квантового хаоса, изучающая недетерминированные системы, подчиняющиеся законам квантовой механики.

Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математикиА. Н. Колмогоров и В. И. Арнольд, Мозер, построившие теорию хаоса, называемую КАМ (теория Колмогорова-Арнольда-Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Основная статьяДинамический хаос
Пример чувствительности системы к первоначальным условиям, где x → 4 x (1 - x) и y → x + y, если x + y <1 (иначе x + y - 1). Здесь четко видно, что ряды значений x и y через какое-то время заметно отклоняются друг от друга хотя в первоначальных состояниях отличия микроскопические

В бытовом контексте слово "хаос" означает "быть в состоянии беспорядка". В теории хаоса прилагательное хаотический определено более точно. Хотя общепринятого универсального математического определения хаоса нет, обычно используемое определение говорит, что динамическая система, которая классифицируется как хаотическая, должна иметь следующие свойства:

  1. она должна быть чувствительна к начальным условиям,
  2. она должна иметь свойство топологического смешивания, и
  3. ее периодические орбиты должны быть всюду плотными.

Линейные системы никогда не бывают хаотическими. Для того, чтобы динамическая система была хаотической, она должна быть нелинейной. По теореме Пуанкаре–Бендиксона (Poincaré-Bendixson), непрерывная динамическая система на плоскости не может быть хаотической. Среди непрерывных систем хаотическое поведение имеют только неплоские пространственные системы (обязательно наличие не менее трех измерений или неевклидова геометрия). Однако дискретная динамическая система на какой-то стадии может проявить хаотическое поведение даже в одномерном или двумерном пространстве.


Топологическое смешивание

Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие "смешивание", как пример хаотической системы, соответствует смешиванию разноцветных красок или жидкости.

Тонкости определения

Пример топологического смешивания, где x → 4 x (1 - x) и y → x + y, если x + y <1 (иначе x + y - 1). Здесь синий регион в процессе развития был преобразован сначала в фиолетовый, потом в розовый и красный регионы и в конечном итоге выглядит как облако точек, разбросанных поперек пространства

В популярных работах чувствительность к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы. Например, рассмотрим простую динамическую систему, которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности, и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.





Хронология

Фрактальный папоротник, созданный используя игру хаоса. Природные формы (папоротники, облака, горы и т.д.) могут быть воссозданы через систему повторяющихся функций

Первым исследователем хаоса был Анри Пуанкаре. В 1880-х, при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодическиеорбиты, которые постоянно и не удаляются и не приближаются к конкретной точке. В 1898 Жак Адамар издал влиятельную работу о хаотическом движении свободной частицы, скользящей безтрения по поверхности постоянной отрицательной кривизны. В своей работе "бильярд Адамара" он доказал, что все траектории непостоянны и частицы в них отклоняются друг от друга с положительной экспонентой Ляпунова. Почти вся более ранняя теория, под названием эргодическая теория, была разработана только математиками. Позже нелинейные дифференциальные уравнения изучали Г.БиргхофA. Колмогоров, M. Каретник, Й. Литлвуд и Стивен Смэйл. Кроме С. Смэйла, на изучение хаоса всех их вдохновила физика: поведение трех тел в случае с Г. Биргхофом, турбуленция и астрономические исследования в случае с А. Колмогоровым, Радиотехника в случае с М. Каретником и Й. Литлвудом. Хотя хаотическое планетарное движение не изучалось, экспериментаторы столкнулись с турбуленцией в жидкости и непериодическими колебаниями в радио-схемах, не имея достаточной теории чтобы это объяснить.

Несмотря на попытки понять хаос в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия. Тогда некоторым ученым стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты подобно логистическому отображению. Чтобы заранее исключить неточности при изучении - простые "помехи" в теории хаоса считали полноценной составляющей изучаемой системы. Основным катализатором для развития теории хаоса стала электронно-вычислительная машина. Большая часть математики в теории хаоса выполняет повторнуюитерацию простых математических формул, которые делать вручную непрактично. Электронно-вычислительные машины делали такие повторные вычисления достаточно быстро, тогда как рисунки и изображения позволяли визуализировать эти системы.

Одним из первых пионеров в теории хаоса был Эдвард Лоренц, интерес которого к хаосу появился случайно, когда он работал над предсказанием погоды в 1961 году. Погодное Моделирование Лоренц выполнял на простом цифровом компьютере McBee LGP-30. Когда он захотел увидеть всю последовательность данных, тогда, чтобы сэкономить время, он запустил моделирование с середины процесса. Хотя это можно было сделать введя данные с распечатки, которые он вычислил в прошлый раз. К его удивлению погода, которую машина начала предсказывать, полностью отличалась от погоды, расcчитанной прежде. Лоренц обратился к компьютерной распечатке. Компьютер работал с точностью до 6 цифр, но распечатка округлила переменные до 3 цифр, например значение 0.506127 было напечатано как 0.506. Это несущественное отличие не должно было иметь фактически никакого эффекта. Однако Лоренц обнаружил, что малейшие изменения в первоначальных условиях вызывают большие изменения в результате. Открытию дали имя Лоренца и оно доказало, что Метеорология не может точно предсказать погоду на период более недели. Годом ранее, Бенуа Мандельброт нашел повторяющиеся образцы в каждой группе данных о ценах на хлопок. Он изучал теорию информации и заключил, что Структура помех подобна набору Регента: в любом масштабе пропорция периодов с помехами к периодам без них была константа - значит ошибки неизбежны и должны быть запланированы. Мандельброт описал два явления: "эффект Ноа " который возникает когда присходят внезапные прерывистые изменения, например изменение цен после плохих новостей " и "эффект Джозефа" в котором значения постоянны некоторое время, но все же внезапно изменяются впоследствии. В 1967 он издал работу "Какой длины побережье Великобритании? Статистические данные подобностей и различий в измерениях " доказывая, что данные о длине береговой линии изменяются в зависимости от масштаба измерительного прибора. Он утверждал, что клубок бечевки ка



Источник: http://no comment
Категория: Мои статьи | Добавил: Administrator (04.03.2010) | Автор: Савчук А. E W
Просмотров: 1773 | Рейтинг: 5.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Copyright MyCorp © 2024